

Introduction to Bioimage Analysis

Dr Ellie Cho & Dr Shane Cheung Platform Manager /Application Specialists Biological Optical Microscopy Platform

Part 1. An Overview of Bioimage Analysis

What is trivial for a human can be very difficult for a computer:

101010		010	101 1 0	00 1 01	10110	0001	0110		10110	101
	110110	0000110		1111	00101	0101	0100	00111 01011	01011	10010 10010
100		001110	1001 0110 0000	01	110 ⁰⁰¹¹ 	00 11	#100 #101 0110	10101 10001 11110	0 000 00111 10101	0 01 0 10 0
		:						Di		
	B	Ina	ry	+	\boldsymbol{D}	git	-	DI	U	
	B	ina 1	ry b	it	וש = C	<u>git</u>) o	= r 1	DI	C	
10 0 0	010100 011011	01101 00011	b				r 1	D 000111		0
	010100 011011 110100 010010	01101 00110 11100 0111	b 1 118 00 011 011	it 111 101 101			r 1 10 0 010 0101 0100	D00111 01011 10101		0) 100) 100 010]
	010100 011011 	11100 00111 11100 0111 11100 0111	1 110 00 011 011	it 111 101 1010 1010 0011	01000 1011 0101 0101 0001		r 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0	Dio111 01011 10101 11110		0 100 100 010 010 010

C 🔒 🛈

SKIP

Goal::

Obtaining quantifiable information from microscopy image of biological sample

Control

In treated group, cell looks 'rounder"...

But how much?

Goal:

Obtaining quantifiable information from microscopy image of biological sample

Control

Treated

Image Analysis workflows

11

Image processing software

https://biii.eu/

by Networks of European Bio-image analyst (NEUBIAS)

HOME	FORUMS	ABOUT BISE	ADVANCED SEARC	H HOW TO	CURATE TAG	GERS		
Rinim	ana In	formati	as Saaral	Enging				Category
DIUIII	age III	TUTITALI	LS SEALLI		(DISL)			Туре
			Recent					Training Material
	0.100 0142	0		6 6 N C	200	ADA		Dataset
Look also	rch	arch	Rept fund ing motor with Ing(F)=R01.65 task		Part	Neurolucida	(Software
			ROI 1-click tools	StarDist - Image	KNOSSOS - 3D J image	Collection	Qı	
			Component	Component	annotation tool		Cc	Type of Software Resource
+ Crea	te an account				Collection			Туре
Log			Most viewed	1				Component
PARSE	EDAM BIOIM/	GING		÷			7	Collection
UNTUL	our		ImageJFX	APP (All-path pruning)	RD-C (Mallante Libratio Infram	easyFRAP		Workflow
+ Data			Collection	Component	Imaris	Collection	Fr	I do not know
+ Form	nat				Collection		Cc	
+ Oper	ration		18465 viewe					1 (1 2021
+ Topic	2		10400 VIEWS					As of Jan 2021

Reviews

Pages 71 24 1,337

Eliceiri et al., Nat Methods, 2012 Wiesmann et al., J Microsc, 2015 Baroux et al., Methods Mol Biol, 2018

Software name	Primary function	h.
ImageJ	Image analysis	2
Fiji	Image analysis	I III
BioImageXD	Image analysis	151,
Icy	Image analysis	
CellProfiler	Image analysis	
Vaa3D	Visualization and image	
	analysis	
FarSight	Visualization	
VTK	Bioimaging library	
ITK	Bioimaging library	
OpenCV	Bioimaging library	
WND-CHARM	Machine learning	
PSLID	Machine learning	
Ilastik	Machine learning	
CellProfiler Analyst	Machine learning and data analysis	
PatternUnmixer	Machine learning	
CellOrganizer	Machine learning, modeling and visualization	
KNIME	Workflow system	13
	(Eliceiri 2012)	

Image processing software @ BOMP

Upcoming image analysis workshops from BOMP:

- FIJI/Image J for Beginners
- FIJI/Image J for Quantification
- Introduction to: CellProfiler
- FIJI/Image J FIJI Macro writing for biologists
- Colocalisation
- 3D image analysis (Imaris)
- Filaments
- Tracking
- Deconvolution (Huygens)

https://microscopy.unimelb.edu.au/

https://microscopy.unimelb.edu.au/news-and-events/bomp-workshop-in-2021

Acquisition Pre-processing

Raw microscopy image

- Acquire with sufficient sampling rate
- Avoid saturation
- Use proper bit depth

- Use whole dynamic range
- Use appropriate **resolution**

What is Microscopy Image

Acquire with sufficient sampling rate

Raw Microscopy Image

Appropriate **resolution** for our object

Raw Microscopy Image

Use higher **Bit depth** for intensity measurement

Raw Microscopy Image

Use whole **dynamic range**

Avoid saturation

22

- Image to be compared **MUST** be acquired (and processed) using the same settings
- Save the image using the microscopy raw format (CZI, LIF, OIB, ND2... OME-TIFF) to preserve metadata. Avoid saving as standard TIFF, JPG, PNG...

More detail on our other microscopy seminar series

https://microscopy.unimelb.edu.au/optical-microscopy/workshops-resources

Pre-processing

Object detection

Measurement / Data analysis

Raw microscopy image

- De-noising
- Background correction
- Bleaching correction (in time, in Z)
- Alignment
- Deconvolution

Fluroescent signal from object

Image formed on microscope

Median Filter (preserves edge)

Gaussian Filter (smoothing,blurring)

Deep learning

The Image Processing Handbook 7th (Russ & Neal 2016)

Noise2Void (Krull 2019) <u>https://github.com/juglab/n2v</u>

26

Background subtraction

'Rolling Ball' (Castle and Keller 2007)

Shading correction

BaSiC (Peng 2017)

1mm

Flat Field Correction

https://imagej.net/Image_Intensity_Processing#Background_correction

Suppress stripes (Bandpass Filter)

Bleaching correction

в) 🔟 🐇 Э) 🏹

'Bleach Correction'

'Bleaching Corrector'

Drift correction in x, y, z, t

Chromatic shift correction

'TransformJ' (Meijering 2001) 🛓 🎹 'Chromatic Aberration corrector' S

Stitching

'BigStitcher' (Preibisch 2009)

More details: <u>https://imagej.net/Category:Registration</u>

Mathematical image restoration method

- Increase resolution in x,y,z
- Increase contrast
- Remove noise

Thereby improves the quality of data visualisation and analysis

www.svi.nl Image created by Dr. Jeff Tucker and Dr. Holly Rutledge from NIEHS, NIH, USA

Object detection

Measurement / Data analysis

Raw microscopy image

Object Detection

• Pixel segmentation

- Conventional
- Machine learning
- Deep learning
- Template matching

Binary processing

Conventional segmentation

- Find threshold using 'negative control' image or from the 'background' area
- To be 'objective', apply same threshold to all images

Conventional segmentation

But

THE UNIVERSITY OF

- Many 'real' images have different background levels
- Background level may change over time in the same sample in live cell imaging

To compensate different background issue,

- Test different Auto-threshold methods
- Apply same auto-threshold algorithm for each image

- Thresholding doesn't work well with non-fluorescence images e.g. BF, phase contrast, Colour, EM images
- Segmentation using few manual annotations
- Interactive, user-friendly
- No machine learning expertise required

- Automatically extracts optimal image features rather than hand-tailored way
- Unsupervised detection but requires manually annotation data and computation
- Some 'pre-trained' models for bioimage are accessible via user friendly software

StarDist (Schmidt 2018) CellProfiler (U-net, McQuin 2018)

Cellpose (Stringer 2020)

- No manual annotation
- Minimal computation computes the probability to find one (or several) template images provided by user into a large image
- Good for finding similar structure in time-lapse or TMA
- No programming skill required

Template & Target

Matched image

Binary image processing

Watershed

Fill Holes

Ultimate eroded points

Skeletons

Dilate

Euclidean distance map **Boolean** logic

Measurement / Data analysis

Raw microscopy image

- Number
- Intensity
- Shape
- Distance (spatial analysis)

• Tracking

(Yamashita 2015)

Count per region of interest (ROI)

Number of Cell / Measured Area (volume) Number of Cell / container (ROI)

Intensity

Mean Intensity = sum intensity / area

Treated cells are brighter

Treated cells shows 2 distinctive populations

- Mean
- Minimum
- Maximum
- Median
- Sum
- StdDev

Coefficient of Variation (StdDev/Mean)

 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0$

2D: Area 3D: Volume

2D: Perimeter3D: SurfaceArea

Convex Hull

Solidity =

THE UNIVERSITY OF MELBOURNE

Convexity =

Aspect ₌ Ratio Max Feret Diameter

Roundess (sphericity)

branch & spine.

Sholl analysis Branch number per concentric shell

(Binley2014)

Neighbour relationships ?

Nearest Neighbour Distance (centroid-centroid)

Minimum Separation Distance (edge to edge)

Colocalisation

molecules are on the <u>same location</u> molecules are <u>interacting</u>

- Correlation Is there a relationship between intensities? (Pearson's)
- Co-occurrence Are the fluorophores are generally near each other ?
 - Intensity based : Mander's
 - Object based : overlapping area or volume

Quantification is heavily dependent on the resolution of acquisition system so careful planning is required

Colocalisation Workshop (https://microscopy.unimelb.edu.au/)

Tracking

Tracking

• Lineage tracing

4

Tracking Workshop (<u>https://microscopy.unimelb.edu.au/</u>)

Data analysic

Bioimage analysis workflow

Acquisition Plate Template **Pre-processing** Object • 8 Segmentation IdentifyPrimary Objects (Fig. 14.17.2B) **OverlayOutlines** (Fig. 14.17.2D) Measurement /

CellProfiler Workshop (<u>https://microscopy.unimelb.edu.au/</u>) (Bray 2015)

Automate analysis

ImageJ Macro writing workshop (https://microscopy.unimelb.edu.au/)

Must visit places

https://microscopy.unimelb.edu.au/

Forum on Bioimage analysis <u>https://forum.image.sc/</u>

ImageJ learn <u>https://imagej.net/Introduction</u>

Cell Profiler <u>https://cellprofiler.org/</u>

NEUBIAS academy https://neubiasacademy.org/

Thank you

Biological Optical Microscopy Platform

bomp-enquiries@unimelb.edu.au www.microscopy.unimelb.edu.au

